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Potential scattering in a slowly varying laser field: 
relativistic generalizations 

Leonard RosenbergtP and Fei Zhout  
t Joint Institute for Laboratory Astrophysics, University of Colorado and National Institute 
of Standards and Technology, Boulder, CO 80309-0440, USA 
$Department of Physics, New York University, New York, NY 10003, USA 

Received 8 May 1990 

Abstract. A variational approach to the problem of relativistic potential scattering in a 
laser field is developed. The field is assumed to be slowly varying compared with the 
collision time and to have a well defined direction of propagation, but is otherwise arbitrary. 
A trial function is chosen having the correct gauge-transformation property and accounting 
in an approximate manner for the simultaneous interaction of the projectile with the centre 
of force and with the laser field. The variational calculation provides a low-frequency 
approximation for the transition amplitude of improved accuracy compared with those 
obtained in previous treatments of this problem. The analysis is first given in terms of a 
spin-zero wave equation and then extended to allow for the scattering of a Dirac particle. 
A relativistic analogue of the Kroll-Watson approximation is obtained when the field is 
taken to be monochromatic and certain higher-order correction terms are dropped. 

1. Introduction 

A low-frequency approximation for the relativistic scattering of two scalar particles, 
one charged and the other neutral, in the presence of a strong, monochromatic external 
field, was derived by Brown and Goble (1968) using very genera1 invariance and 
analyticity considerations. The approximation involves as input the field-free scattering 
cross section and, remarkably, correctly includes the first two terms in an expansion 
in powers of the frequency. In a subsequent elaboration of this approach (Rosenberg 
1982) the result appropriate to a monochromatic field was generalized to allow for an 
arbitrarily polarized wave train of finite extent, and for a charged particle of spin.;. 
This latter paper also contained a demonstration of the close analogy which exists 

in the context of non-relativistic potential scattering. More recently, a low-frequency 
approximation was derived by Kaminski (19851, applicable to the potential scattering 
of a Dirac particle in a monochromatic, linearly polarized field. That result gave what 
might be called the leading term of an approximation of the Kroll-Watson type; it 
did not include the first-order correction terms which one expects (from the above. 
mentioned analogy, for example) should be present. It may be anticipated that these 
corrections will take the form of small shifts in the momenta appearing as arguments 
of the on-shell field-free scattering amplitude. Here we adopt a variational approach 
which does in fact generate first-order correction terms of this type; these terms reduce, 
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in the non-relativistic limit, to the expected form, and provide recoil corrections of 
order v/c not present in the Kroll-Watson formula. Moreover, the calculation provides 
an explicit expression, involving the field-free wavefunction, for the second- and 
third-order corrections as well. (We will be more precise later on in specifying levels 
of accuracy.) As with any variational calculation, the essential feature is the choice of 
trial function; it is constructed here by generalizing to the relativistic case the approxi- 
mate wavefunction used (non-variationally) by Kroll and Watson. The suggestion that 
the Kroll-Watson wavefunction would be useful as a trial function in a variational 
calculation (for non-relativistic scattering in a laser field) was made by Kaminski 
(1988). Such an approach appears to provide an effective procedure for developing 
low-frequency approximations applicable to a variety of scattering (and ionization) 
problems. We confine our attention to relativistic potential scattering here and will 
report on other applications in the future. 

L Rosenberg and Fei Zhou 

2. Variational principle 

2.1. Modified plane waves 

We first consider the scattering of a particle of zero spin. The wave equation in the 
absence of the external field is taken to be not the usual Klein-Gordon equation, but 
rather a linearized version (in units with f i  = c = 1) 

As shown by Goldberger and Watson (1964), the solutions of (2.1) will differ only 
little from those of the Klein-Gordon equation if the potential is weak enough so that 
pair creation effects are negligible and is slowly varying relative to the de Broglie 
wavelength. Equation (2.1) is preferred here since, being of first order in the time 
derivative, it is closer in form to the Dirac equation; the extension of the theory to the 
spin-f case (taken up in section 3 below) will then be quite straightforward. The external 
field is assumed to have a well defined direction of propagation, taken along the z 
axis. It is described by a 4-vector potential A = ( A x ,  A,, A,, A,,), a function of the 
variable T =  1 - 2  (not to be confused with ‘proper time’), and satisfying the Lorentz 
condition aA = 0. We then have nA = 0, where n has components n, = no = 1 with the 
others vanishing. (The metric is such that ab = a .  b - aobo.) It is sometimes convenient 
to work in the Coulomb gauge, with A, = A , =  0 and A equal to a divergenceless 
3-vector Ac lying in the xy plane. More generally, there is a (gauge) freedom in the 
choice of the function A, = A,, and the requirement that all calculated cross sections 
be invariant with respect to changes in this arbitrary function provides a useful guide 
in the construction of approximations. 

The wave equation in the absence of the scattering potential, but with the field 
present, is obtained from the minimal-coupling prescription as 

h- iV-eA)2+in2‘p= i--eA, ‘p. 
(.aJt ) 

This equation has an exact solution (Volkov 1935) of the form 
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with 

(The presence of a constant phase factor multiplying the pure plane wave in the limit 
t +  -a in the solution (2.3) is of no physical consequence.) To verify that the wave 
equation is satisfied, one inserts the expression (2.3) into ( 2 . 2 )  and (letting irepresent 

(2 .5 )  

which holdi for p'+ m2 = 0 and nA = 0. Note that under the gauge transformation 
A +  A -  n d h ( ~ ) / d . r  the corresponding transformation of the Volkov solution is 

I ..-it . r a n + - -  :- +ha - -__: .._" -1 &La .---A:+:-- 
'2 " L U L  "CCL", 111 Ll lC  ' UL'C..,1"'L, 'l_LL."CJ nr L11S C"llUlLl"ll 

J ( p  - eA + ilD)2+ m2 = p o -  eAo+ I, p O ( T )  

This conforms with the gauge invariance of the theory; the presence of the constant 
phase involving A(0) is of no consequence in this regard. 

2.2. Trial scattering wavefunction -~ ,ne ~ ~~~~~~~ wave equaiion, in the presence of both the seaiienng poirniiai i'ne exietnai 
field, is written as 

J ( - iV-eA)2+m2$= (2.6) 

The exact outgoing-wave solution corresponding to an incident wave of momentum p 
reduces to the solution of (2 .1 )  in the absence of the field; i.e. 

@'(x) + exp(-ip,t)u!,+'(x) for A+O 

vGG7 Ub"(X) = ( P o -  v ) u y ( x ) .  

where the field-free scattering function satisfies 

(2.7) 

In the absence of the scattering potential the exact solution reduces to the Volkov 
wavefunction. We now introduce a trial function, satisfying these boundary conditions, 
of the form 

&+'(x) = exp[-i~,(.r)]u$j) (2.8a) 

with 

Q P (  T )  = Io' I,( T ' )  dT' - eA( T) . X +  I,( T ) Z  + p o t  (2.86) 

and 

P ( T )  = p - eA + 51,. ( 2 . 8 ~ )  

The momentum P ( T )  is recognized (Brown and Goble 1968) as the solution of the 
classical equation of motion for the particle in the field. It is readily verified that the 
trial function (2.8a) has the correct gauge-transformation property. In the non-rela. 
tivistic limit, with recoil corrections of order U / C  ignored, it reduces to the approximate 
wavefunction introduced by Kroll and Watson. 
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A measure of the error in the trial function is obtained by evaluating 

with 

H = J(-iV - eA)'+ m2 + I/+ eA,. (2.10) 

With the aid of (2.5) and the version of (2.7) in which p and po  are replaced by P ( T )  

and po( T ) ,  respectively, we find that 

B = e-ia (J(-iV+ e iF .  x ) ~ +  m 2 - m -  eF .  x - i  aa,) - U(+) P ( ~ J  ' (2.11) 

where, in terms of the electric field E, we have defined an effective field vector 

(2.12) 

We may interpret W = -2F.  x as  a relativistic generalization of the vector potential 
in the length gauge. The first two terms on the right-hand side of (2.11) have the 
structure (with p = -iV and E = ( -V2+ m2) ' l2 )  

P ( T )  

"P 
F( T )  = E (  T )  - iE( T )  . -. 

(2.13) 

correct to first order in the electric field. In view of the form (Goldberger and Watson 
1964) 

(2.14) 

taken by the conserved current associated with the wave equation (2.1), one may view 
the expression on the right-hand side of (2.13) as representing the interaction of the 
Conserved current with the vector potential W. Turning our attention to the last term 
in (2.11), we note that 

1 
2i 

j ( x )  =- [ ( ~ - ' / ~ u * ) ( e - ' / ~ V u )  - (E- ' / '~U*)(E- ' '~U)]  

and 

-- ~ F ( T ) .  (2.156) 

(If one were to calculate the ioial derivative of the classical momentum, then F on 
the right-hand side would of course be replaced by E + U x B; the two field vectors 
differ by a factor d.r/di = 1 - u , ( T ) . )  Thus the error in the trial function, as indicated 
by (2.11)-(2.15), is of the order of the electric field (rather than the vector potential), 
in agreement with the analogous property (Kaminski 1988) of the Kroll-Watson 
wavefunction. (The origin of this property may be traced to the form of the phase 
function (2.86), which essentially brings about a transformation from the momentum 
to the length gauge.) It follows that a variational approximation will contain an error 
of second order in the field strength. If the motion of the particle in the neighbourhood 
of the centre of force is perturbed only slightly by the presence of the external field 

J i  
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(as will be true in a wide variety of cases of interest in atomic and nuclear applications) 
we may expect the variational approach to be an effective one. Since the electric field 
is a time-derivative of the vector potential, the approximation procedure should be 
particularly appropriate for slowly varying fields. (A  low-frequency field, even of 
moderate intensity, will have a substantial effect on the motion of the particle in initial 
and final states; this is accounted for non-perturbatively in the trial function (2.81.) 

2.3. Variaiionai approximarion 

Following standard methods, we may take as our starting point the expression 

S ( p ' , p ) = i  ;,LI IiIi-I d'x' I d3xq;,(x')G(x', x)rp,(x) (2.16a) 

for the S matrix in terms of the Green function G which effects the time evolution of 
the system. Alternative versions of this representation are 

S(p ' ,p )=l im d'x&(x)$~+)(x) (2.166) 
I-m I 

and 

S( p ' ,  p )  = lim d3x $,b~'*(x)qp(x) ( 2 . 1 6 ~ )  

where the superscript (-) signifies incoming-wave boundary conditions. Use of the 
Lippmann-Schwinger integral equation for the exact solution in (2.16b) leads to the 
identity 

J 

S ( P ' ,  P) = 8 W - p )  - i T(  P'. P )  (2.17) 

with 

T ( p ' , p ) =  d"xq;j.V$;). (2.18) I 
A 7ior;at;nnnl iApnt;tw fnr ehl. trslnri+inn n m n l ; t l s A a  mQtl hn lxir;tten i n  ehn fnrm 
I. 111.1 ..1..1. .-.-....._' .-. ...- .."..".I._.. "...~..."-- ..."l Y l  ...... 1.. ..1 ... " ." L... 

(2.19) 

with the incoming scattered wave defined as 

u);&=*,b7)-qD,, (2.20) 

This scattered wave vanishes in the distant future; the outgoing scattered wave satisfies 
the analogous boundary condition 

t+-m. (2.21) ( + ) L  $E= JlP P P + 0  

Strictly speaking, these conditions hold when the asymptotic plane waves, adopted 
here to slrr.p!i!j !he presenta!ion,  re rep!zced by !oca!ized wivepacke!s. When !ha: 
is done the trial function shown in (2.8). which (as noted above) has the property of 
reducing to the Volkov wavefunction in the absence of the scattering potential, will 
satisfy the same boundary condition (2.21) as does the exact solution. The demonstra- 
tion that the right-hand side of (2.19) does in fact represent the T matrix as defined 
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in (2.18) is achieved through an integration by parts (with H taken to be Hermitian) 
and the use of the boundary conditions discussed above, along with the wave equation 
satisfied by the exact incoming scattered wave. If this function is replaced by an 
approximation to it, differing by a first-order quantity, one sees that the error thereby 
introduced in the transition amplitude is of second order, assuming that the quantity 
B of (2.9) is of first order. We now begin an examination of the nature of such a 
variational approximation. 

With the trial function chosen as in (2.8) the first term in (2.19) may be written, 
after a change of independent variables to the set (x, y, z, T ) ,  as 

L Rosenberg and Fei Zhou 

where, with p ' ( ~ ) = p ' - e , 4 ( ~ ) + & ( ~ ) ,  we have defined 
(2,2.2bj @( T )  = p ' ( ~  j - 5[iP.(Tj - i o ( T  j + pb - poi. 

The off-shell field-free f matrix is represented as 

t (p ' ,p)=(2~r- ' ' '  d'x exp(-ip'. x ) V u r ' ( x ) .  (2.22c) J 
The use of a trial incoming scattered wave in place of the exact function in the second 
term in (2.19) provides a first-order correction to T"'. With the choice 

$(e' - 
Pl:Ic - e x ~ [ - i ~ , , ( ~ ) l ~ b ; ( ~ ~ : ~ ~  

and with the aid of (2.11), (2.12) and (2.15) this term may be put in the form 
m 

T"'= 1 dT exp(i 1' dT'[1,.(T') - IP(T ' ) ]  +i(pb -PO)'\ W ( T )  ( 2 . 2 3 ~ )  
J -m \ Jo J 

with 

W ( 7 )  = d3X eXp i[pb-pO+ r p , ( T ) -  I , , ( T ) ] Z  

x ";;~~;sc[(-iv,;7; - x )  . &+J(-jV+ &. x)2+ m 2 - L i T 2 j U ~ ; ' ~  

I 
(2.236) 

As indicated earlier in connection with (2.13) and (2.14), the square-root terms in 
(2.236) can be interpreted (to first order in the electric field) as the interaction of the 
off-diagonal matrix element of the conserved current with the vector potential -fF. x. 
In section 4, below, we examine a number of special cases to gain further insight into 
the nature of this variational approximation. First, however, we indicate how the 
formalism may be generalized to include spin degrees of freedom. 

3. Dirac equation 

The analysis will now be extended to apply to the scattering of a Dirac particle. In 
the absence of the field the wave equation is 

(3.1) 
J 

J t  
[a. (-iV)+pm+ V ( x ) ] u ( x ,  t )  = i -  u(x ,  I ) .  
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(For simplicity we ignore the effect of an anomalous magnetic moment, and we suppress 
all spin variables in the specification of the wavefunctions.) The equation which 
generates the Volkov modified plane wave is 

[a. (-iV - eA)+pm]p = 1 -- eA, ‘p (3.2) (.sat 
a solution for which we seek in the form 

rp,(x) = (2n)r”’exp -i dT’ I,(T’)+ipx ,yo. (3.3) ( 1: ) 
When this form is substituted into (3.2) we find, as the equation determining x, 

(3.4) 

with 

p (  7 )  = p - eA( 7 )  f nr,( 7 )  (3.5) 

as previously defined. It may be verified that a solution to (3.4) is provided by 

where ‘U( p ) ,  for p2+ m2 = 0, satisfies 

(a .P + p m ) W p )  = p0Wp). 

As a first step in verifying (3.6) one uses the relations 
(3.7) 

to show that the terms involving the space and time derivatives cancel in (3.4). The 
equation for ,y then becomes 

[a . p i  T )  + ,@m jx, = poi T ) x , .  (3.8) 
To demonstrate that this equation is satisfied by the expression (3.6), it is convenient 
to work with its alternative covariant form 

(3.9) 

with y, =pa, ,  yo = p, since the Dirac algebra is simpler when expressed in terms of the 
matrices y,. The demonstration, which is not reproduced here, makes use of the 
anticommutation relations satisfied by these matrices along with the relations nA = 
( yn)’ = 0. Similar techniques are used to confirm that with Y( p)  normalized to unity 
the same is true for x,. This allows us to make the identification 

X J T )  =.k[p(~)j .  (3.10) 

A trial function of the generalized Kroll-Watson form is provided by the expression 
shown in (2.8), above, with the field-free solution now understood to be that appropriate 
to the Dirac equation: 

[a. ( - i v ) + p m +  V j u ~ l , = p o ( ~ ) u ~ j ) .  (3.11) 
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As in the spin-zero case the trial function correctly reduces to the Volkov solution in 
the absence of the scattering potential. 

The variational approximation is obtained from the identity (2 .19)  where now 

L Rosenberg and Fei Zhou 

H = a. (-iV - e A ) + p m  + V +  e A ,  ( 3 . 1 2 )  

(and the asterisk denotes Hermitian adjoint). Making use of (3 .11)  we find that 

( ~ - ~ ~ ~ ~ ~ ( + ) = ~ ~ ~ ~ - ~ ~ p ( 7 ~ ] ~ ( - ~ V ~ ~ , j - ~ ) .  \ - -  a i / ' "  @+e. e;F.xj.;;i. (?.!?I 

The second term on the right represents (in analogy with the corresponding term arising 
in the spin-zero case) the interaction of the conserved Dirac current with the vector 
potential in the length gauge. The variational approximation is T =  T"'+ T'*', with 
the first and second terms given by the appropriate spin-; versions of (2 .22)  and (2 .23) ,  
respective!y. T k ~ s  the oE&e!! t matrix i:! (2.220) new rakes !he fen? 

t [ Q ( T ) , P ( 7 ) ] = ( 2 1 r ) - " 2  1 d'xexp(-iQ(r) 'X)x:.(T)v(X)Ub;lj(X). (3 .14)  

For later reference we note that this f matrix will be on the mass shell if Q ( T ) ,  defined 
in ( 2 . 2 2 6 ) ,  is replaced by p ' ( ~ ) = p ' - e A + i l , . .  The correction term is of the form 
I? - 9 " )  :.. ^F ,I 11L\ .. .^ L".... 
\L . 'JU,  W L I C I C  LI"W, 111 pLLc= "1 \L. 'JV,, W L  11LL"C 

w ( T )  = d'x exp[i( pb -po+ 1,. - I , ) z ]  

x u~;!T:.F[(-iV,r,, -x )  . e F +  a. e i F .  x ] u b ; l , .  ( 3 . 1 5 )  

I 
4. Some limiting cases 

4.1. Intermediate- and strong-coupling regimes 

The main achievement of !he variational method developed here is the determination 
of the correction term T'2' in the form shown in (2 .23) .  There are circumstances, 
however, in which one is not interested in maintaining this level of accuracy; it would 
then be useful to have available simpler, if less accurate, versions of the leading 
approximation given by (2 .22) .  In looking for such simplifications let us suppose, to 
begin with, that the field is strong enough or sufficiently slowly varying so that the 
phase in (2 .22a)  varies rapidly as a function of T, much more so than does the 1-matrix 
factor in that equation. We may then apply a stationary-phase approximation to the 
evaluation of the integral (Rosenberg 1982). At the point of stationary phase we have 
the equality 

( 4 . 1 )  p b - p u  = I, - I,.. 
With this condition imposed the final-state momentum in ( 2 . 2 2 6 )  is changed to 

(4.2) A -  ..- " A  I *. v - y - c f i  ~r ",' 

in which case the f matrix in ( 2 . 2 2 a )  becomes t [ p ' ( ~ ) , p ( ~ ) ] .  The initial and final 
momenta appearing in this expression satisfy 

2 - r 2  Ip(T)l2+m2 = P ~ T )  ' /P ' (T)I2+m - P o  ( 7 )  
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respectively. Furthermore, by virtue of (4.1) the energies p 0 ( 7 )  and p ; ( ~ )  are equal so 
that the f matrix in the spin-zero case may be identified with the physical field-free 
scattering amplitude. To complete this argument for spin-f scattering we note that there 
we require (in addition to the validity of the condition (4.2)) that the final-state spinor 
satisfies the Dirac equation appropriate to the on-shell momentum ~ ' ( 7 ) :  

(a' P ' ( T ) + p m ) X , . = P b ( ' ) X ~ ,  (4.3) 

which is in fact the case. (The corresponding equation for the initial-state spinor has 
appeared earlier in (3.8).) 

Let us now consider an 'intermediate-coupling' regime (Rosenberg 1982) in which 
both the amplitude of the vector potential and its characteristic frequency are treated 
as first-order quantities, and second-order terms in ( 2 . 2 2 ~ )  are neglected. In the 
argument of the f matrix appearing there we write 

Q ( T ) =  Q d ~ ) - B ( p b - p , )  (4.4) 

and, with the energy shift taken to be of first order, we expand this function as 

~[Q(T).P(T)~=~[Q~(T).P(T)~-(P~-PO)~.V~(~)~[Q(T),P(T)I. (4.5) 
A _  :..A""--.:-.. I _ _ _  -"..A" _^^..I.^ :- LL,. ^^^_^_. 
flu rrlrsgrarrvrl uy p a l m  1G>U11> 111 L U G  Icpraccr,rcllr 

- M - P o ) +  Ip,-I ,  

valid to the required accuracy. Here we ignore the contribution arising from the 
differentiation of the f matrix since that introduces a second-order term in the form 
of the derivative of the slowly-varying vector potential. The surface terms are assumed 
to vanish. This may be justified through the introduction of a convergence factor 
exp(-v]Tl), with 7 taken to be a positive infinitesimal which is allowed to vanish at 
the end of the calculation. The result of these manipulations is the replacement of the 
final momentum Q ( T )  by ~'(7) as in (4.2). We cannot yet conclude that the 1 matrix 
is on shell since ( 4 . 1 )  has not been verified. The deviation from the mass shell may be 
measured by expressing the f matrix in terms of the four scalar variables 

c = J l P ( T ) 1 2 + m 2 - P o ( T )  f '  = JIP'(T)I'+ m2 - P o ( T )  

along with the energy and momentum-transfer variables p , ( ~ ) ,  and [ P ' ( T )  - P ( T ) ] * ,  

respectively. The f matrix is on shell when t= 0 and ('= 0; while the first condition 
is satisfied the second is not. However, we note that 

, ' 

, - \ - " r L  r -" - r 
5 - Y o {  1 I -P"t 1 / - Y o  ' '0'- PO ~ ' P .  

Treating this as a quantity of first order, we may expand the f matrix about c=O and 
discard second-order corrections. The first-order contribution vanishes, as may be seen 
by once again applying the integration-by-parts procedure. It follows that only on-shell 
values of the f matrix need be known in the evaluation of the first-order approximation 
(2 .22a)  in the intermediate-coupling regime. 

It may be appropriate to emphasize that the value of the components A o = A ,  of 
the vector potential may be chosen arbitrarily, so that a characterization of the strength 
of the potential (as is done above in defining intermediate- and strong-coupling regimes) 
is meaningful only in a gauge-invariant formulation such as the one developed here. 
In  what follows we make the simplest choice A,  = A, = 0. 
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4.2. Monochromaticfield 

We now specialize to a linearly-polarized monochromatic field with vector potential 
chosen, in the Coulomb gauge, to be A,= a cos W T .  In (2.220) we write 

L Rosenberg and Fei Zhou 

1 1 2 2  e2a2 
I , , ( o J T ) = - ( ~ ~ ~ . ~ c o s ~ T - , - ~  a COS~OJT)-- 

2nP 4nP 
along with a similar expression involving the final momentum. (In order to simplify 
subsequent formulae we have taken the liberty of changing notation, with OT rather 
than T now chosen as the independent variable.) After the introduction of a Fourier 
expansion, the integration over T may be completed to yield 

(4.7) 

The coefficients are obtained in the form 

Ti')= jO2- - :: exp[ilO+i(p'-p) sin 8 - i(a '-  a )  sin 2 e ] f [ ~ ( 8 ) ,  p(e)]  (4.8) 

where we have defined 

P=- 
W n P  

ep . a e2a2 
8wnp 

a =- (4.9) 

Similar definitions hold for p' and a' with the final momentum replacing the initial 
one. The phase-dependent momenta are given by 

(4.10a) 

(4.10b) 

p ( 8 )  = p  -ea  cos s+iI , (e )  
Q( e) = P Y  e) - WJ 0) - I,( 8) + P; - pol 

with 

p ' ( e ) = p ' - e a  cos efil, .(e). (4 .10~)  

In a similar way we may expand the correction term shown in (2.23) as 

,=-m 
(4.11) 

where 

Ti2'= jo2T$exp[i10+i(p'-p) sin 0 - i (a ' -  a) sin 28]w(8). 

We find that, for the spin-f case, the appropriate modification of (3.15) is 

w ( 8 )  = d'x exp(ik. x ) u ~ ; ~ ~ ~ s c [ ( - i V p ~ e l  - x) . &(e) + n. &(e) . xlub;:, , (4.13) 

(A similar expression, based on (2.23b). is obtained for the scattering of a spin-zero 
particle.) Energy conservation has been used to write the exponential in the form 
shown in (4.13), with 

k = i o [ i + ( p ' - p ) ~ ~ ~  e - 2 ( r r ' - a ) ~ ~ ~ 2 e ] .  (4.14) 

(4.12) 

I 

We also have 

(4.15) 
o a  sin e . p ( B )  

nP 
F ( O ) = o a s i n  8-i 
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The cross section for the absorption of I photons (or emission if I is negative) is 
obtained, in this variational approximation, in the form 

(4.16) 

4.3. Approximations of the Kroll- Watson type 

Approximations to the leading term shown in (4.8) can easily be obtained, in either 
the intermediate- or strong-coupling regime, through an application of the methods 
described in subsection 4.2 to the case of a monochromatic field. Thus for the strong- 
coupling case the condition of stationary phase becomes 

I + ( p ' - p ) C 0 ~ 8 - 2 ( a ' - a ) c 0 ~ 2 8 = 0 .  (4.17) 

When this equation is combined with the energy-conservation condition, obtained 
from (4.7) in the form 

e2a2 e2a2 
lo =p&-po--+- 

4np' 4np 
(4.18) 

we arrive at the relation 

Pb - Po = 1, ( 8 )  - 8) (4.19) 

in accordance with (4.1). Then Q(O), defined in (4.10b), may be replaced by p ' ( 8 )  
which, by virtue of (4.19), puts the t matrix on the mass shell. We shall suppose, for 
definiteness, that (4.17). a quadratic equation for cos 8, has one and only one physical 
solution cos 8,, satisfying lcos O0l < 1 .  With the f matrix evaluated at 8 = Bo. equation 
(4.8) becomes 

= [ I ) -  I - U p ' -  P. " - a ) t [ p ' ( 8 0 ) ,  P(0O)l (4.20) 

with the generalized Bessel function defined as 

L1(x ,y)  = ~02n$exp(i18+ix sin 8-iy sin 28). (4.21) 

By adapting the discussion given at the end of subsection 4.1 to the case of a 
monochromatic field we may conclude that in the intermediate-coupling regime the i 
matrix appearing in (4.8) may be evaluated on shell, and expressed in terms of the 
variables 

[ p ' ( 8 ) - p ( 0 ) ] ~ = ( p ' - p ) ~ + 2 ( p : - p ~ )  7-- . eacos 8. (n"d I9 
Here terms of second order in the amplitude of the vector potential have been dropped. 
This t matrix may be thought of as a function of the variable a cos 8, with the other 
variables temporarily suppressed. Then, to first order, we have 

t(a cos 8)=t(O)+a cos 81' (4.22) 
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the prime denoting differentiation. An integration by parts allows us to make the 
replacement 

L Rosenberg and Fei Zhou 

1 
cos e +  cos (0,) = -~ (4.23) 

( P ‘ - P )  

on the right-hand side of (4.22). The on-shell f matrix resulting from this replacement 
may be expressed, as in our original notation, in terms of the initial and final momenta; 
evaluated at the phase angle 0,. The approximate transition amplitude is of the form 
shown in (4.201, where now 

ea/ ep. a/ eo/ ep ’ .o /  
P( 0,) = P + - - i p’( 0,) = pr+-- 2 (4.24) 

( P ‘ - P )  ( P ’ - P ) n P  ( P  - P I  ( p ‘ - p ) n p ”  

Iii ihe non-iciaiivisiic iimii, wiih rei.& correciions of order v j c  ignored, we may 
set “ - 0 1  equal to zero and obtain the Kroll-Watson approximation 

(4.25) 

This same form applies to both intermediate- and strong-coupling regimes, but in the 
latter case the momentum shifts appearing in the arguments of the f matrix should be 
dropped for consistency; these shifts introduce corrections of first order in the frequency 
and the term Ti2’,  which has been omitted in this approximation, is of the same order. 

5. Summary 

A trial wavefunction has been constructed which serves as a fairly accurate representa- 
tion of the relativistic dynamics of a charged particle scattered by a centre of force in 
the presence of a strong, slowly varying external radiation field. A non-relativistic 
wavefunction introduced some time ago (Kroll and Watson 1973) served as a model 
in this construction. The effectiveness of this trial function has been enhanced, following 
a suggestion first made by Kaminski (1988) in a slightly different context, through its 
use in a variational principle for the transition amplitude. Thus, if one treats both the 
amplitude of the vector potential and its frequency as first-order quantities (‘intermedi- 
ate coupling’) the error in the trial function, being proportional to the electric field, 
is of second order and the calculated transition amplitude contains an error offourfh 
order. The leading term in the variational expression thus obtained provides a relativistic 
generalization of the low-frequency approximation derived non-variationally by Kroll 
and Watson. The higher-order term is new. It corrects for the neglect, in the leading 
term, of the interaction of the projectile with the external field during the collision. 
This correction term contains a factor, shown in (3.15) for the spin-f case, which is 
similar in form to the matrix element for a single-photon bremsstrahlung process. More 
precisely, it may be identified as the correction to the low-frequency approximation 
derived by Low (1958) for this process. (This identification may be established quite 
readily by taking the weak-field limit of the variational approximation and examining 
the term of first order in the electric charge.) Applications-of this variational method 
to the development of improved low-frequency approximations for electron-atom 
scattering in a laser field will be reported on in the near future. 
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